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Lecture 14 Highlights 
Phys 402 

 
We are exploring time-dependent perturbation theory… 

Consider the problem of how an atom makes a transition from one state to another 
when it is stimulated (perturbed) by a time-dependent electromagnetic field.  Consider a 
hydrogen atom prepared in its 1𝑠𝑠 ground state.  The light exerts a force on the electron 
dominated by the electric field, )cos(ˆ0 txEE x ω=


, which is arbitrarily assumed to be 

polarized along the x-direction.  The electric field in the electromagnetic wave stretches 
the Hydrogen atom and gives it an electric dipole moment. This stretching happens 𝜔𝜔 times 
per second, where 𝜔𝜔

2𝜋𝜋
~1015Hz for visible light.  We assume that the wavelength of the 

(visible) light (λ ~ 500 nm) is much greater than the size of the atom, which is the scale of 
the Bohr diameter ~ 0.1 nm.  Therefore the atom experiences a uniform-in-space but 
oscillating in time electric field, as written above, to good approximation.  (Think about 
being on a small boat in the ocean with long wavelength swells going by.  Locally you see 
a ‘flat’ sea surface that simply oscillates up and down sinusoidally with time.) 
 The potential associated with the (conservative) electric force is: 
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),( .  We treat this potential 

as the time-dependent perturbation 𝐻𝐻′.  Assume that the hydrogen atom is left alone in the 
1s state for all times before t = 0.  At t = 0 the light turns on and the perturbation begins.  
At time t the light is turned off.  Now the question is which state does the hydrogen atom 
find itself in, and with what probability?  This is a job for time-dependent perturbation 
theory. 
 The transition probability can be calculated from the transition amplitude rate from 
state 𝑛𝑛 to state 𝑗𝑗 found in Eq. (1) of the last lecture: 
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In this case we get: 
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The last piece is the “dipole matrix element” xdxxxx njjn
3* )()(  ψψ∫≡ , which will give rise 

to “selection rules” for the transitions.  For the moment, we can consider this simply as a 
time-independent complex number, and we will return to this term later. 
 Integrating up the transition amplitude rate gives the transition amplitude for the 
time-dependent perturbation of duration 𝑡𝑡: 
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This quantity has two terms that get very large when ω±=− 00
nj EE .  The system 

starts in state 𝑛𝑛 and makes a transition to state 𝑗𝑗.  Hence, the second term corresponds to 
absorption of energy ω by the atom in moving from state 𝑛𝑛 to state 𝑗𝑗.  The first term 
corresponds to the atom starting in a higher energy state 𝑛𝑛 and giving up energy ω to the 
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electromagnetic field and going into lower energy state 𝑗𝑗.  This process is known as 
‘stimulated emission’ of radiation.  Note that these two processes (absorption and 
stimulated emission) occur with the same probability pre-factor. 

Recall that 𝜔𝜔 is the frequency of the electromagnetic field that is perturbing the 
atom, and is a variable under our control.  The energy difference 00

nj EE −  is a fixed property 
of the quantum system (in this case a Hydrogen atom).  We focus on the case of absorption 
of energy by the atom from the electromagnetic field ω+=− 00

nj EE  (i.e. 𝐸𝐸𝑗𝑗0 > 𝐸𝐸𝑛𝑛0), which 
arises from the second term.  Last time we found that the absorption probability is: 
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As a function of time this transition probability is (a squared) sinusoidal.  It 
increases initially from zero, as we would expect.  However it returns to zero periodically 

in intervals of time given by ( )ω
π


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−− 00
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nj EE
.  This is the phenomenon of Rabi flopping 

(Fig. 11.4 in Griffiths), in which the system periodically has probability zero of having 
made a transition to the upper state, despite the fact that the perturbation has been acting 
for some time.  This is quite surprising at first sight.  It occurs because when the atom is 
excited in to the upper state and can emit a photon by means of the stimulated emission 
process and go back to the initial state. 

When the electromagnetic driving frequency is “right on the money”, namely 



00
nj EE −

=ω , one can find the following result for the transition probability: 
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𝑡𝑡2.  In other words the transition probability increases 

quadratically in time, until the point where perturbation theory is no longer valid. 
As a function of frequency offset (detuning) from resonant absorption,


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−ω , the transition probability (for fixed duration 𝑡𝑡) is a 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2-like function (Fig. 

11.5 of Griffiths).  Recall that
x

xx sin)(sinc ≡ .  This means that there is non-zero probability 

for the atom to make the transition even though the frequency does not exactly satisfy the 
condition 00

nj EE −=ω .  Because the perturbation is on for a finite time interval, there is 
an uncertainty in the frequency of the light, and this uncertainty satisfies the energy-time 
uncertainty relation: ≥∆∆ tE .  By examining the Fourier transform of the finite-duration 
(in time) perturbation one finds “sidebands” at frequencies nearby the central frequency of 
the cos𝜔𝜔𝜔𝜔 perturbation.  Some of these sidebands will be at the transition frequency of the 

quantum system 


00
nj EE −

.  (Note that the energy-time uncertainty relation: ≥∆∆ tE does 
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not arise from a pair of non-commuting operators, but is simply a consequence of the 
behavior of functions that are Fourier transform pairs.) 

The phenomenon of Rabi oscillations is very different from our everyday 
experience of how macroscopic objects (i.e. those made up of many atoms) absorb 
electromagnetic radiation.  When illuminated with broadband light (like French fries under 
an infrared lamp at McDonalds) objects tend to steadily absorb the light and heat up to a 
steady state temperature, showing no signs of oscillation with time.  We did a calculation 
of the transition probability of an atom illuminated with a broad spectrum of light like that 
coming out of a blackbody radiator, like the sun.  A black body radiation spectrum has an 
electromagnetic energy density (energy per unit volume per unit frequency) given by 
Planck’s formula: 
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where ω is the angular frequency of the radiation, Bk is Boltzmann’s constant, and T is 
temperature of the blackbody radiator.  This source is emitting light over a broad range of 
frequencies.  We co-opted the result from the last lecture that the probability of transition 
due to a monochromatic light source of strength 𝐸𝐸0𝑥𝑥 is given by: 
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We replaced the energy density of this monochromatic wave (1
2
𝜀𝜀0𝐸𝐸0𝑥𝑥2 ) with the energy 

density of a blackbody radiator (𝜌𝜌(𝜔𝜔) 𝑑𝑑𝑑𝑑) for a differential segment of frequency 𝑑𝑑𝑑𝑑. The 
blackbody source illuminates the atom with many different frequencies and many different 
polarizations simultaneously.  This excitation is incoherent in that there is no fixed phase 
relationship between the incoming light at different frequencies.  As such, we will 
incoherently add up the probability (as opposed to amplitude) of transition for each 
differential segment of the frequency spectrum separately.  The result is a transition 
probability that increases linearly with time, or in other words, a transition rate that is 
constant.  This is consistent with our everyday experience that objects illuminated with 
light get steadily hotter (until they radiate or conduct some of that heat away and come in 
to a steady state condition).  To see Rabi oscillations requires carefully prepared laboratory 
conditions where the Hamiltonian of the atom is controlled to be just the terms that we 
assume, and no others. 

We found the rate of absorption of this type of radiation by a two-level atom (states 
a and b ) assuming random polarization of the light: 
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where abab EE ω=− , and the term in parentheses contains the three Cartesian dipole 
matrix elements between states a and b. 

A constant transition rate is very different from the oscillatory transition probability 
seen in the Rabi flopping case.  This difference comes about because the many absorption 
processes at different frequencies produce a ‘smeared-out’ response that destroys the 
coherent Rabi oscillations and results in a classical incoherent absorption.   


